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Fractal Model of the Atom in the Hydrodynamic Approach
 of Scale Relativity Theory
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In this paper the fractal model of the atom, using the hydrodynamic approach of the scale relativity theory,
is obtained. Thus, assuming that the electron motion around the nucleus takes place on fractal curves of
fractal dimension DF (continuous but non-differentiable curves), it is shown that its dynamics, in the second
order approximation of the equation of motion, is described in complex speed field by a generalized Navier-
Stokes type equation with imaginary viscosity coefficient. Applying this model to study the atom, it resulted
that the real part of the complex velocity field describes the electron averaged movement. The electron
moves on stationary orbits according to a quantification condition and the imaginary part of the complex
velocity  describes  the  fractality through  a  fractal  potential.  In the  DF=2 fractal dimension and for the
D=h / 2m viscosity coefficient, the classical results of quantum mechanics for the hydrogen atom are obtained.
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The theoretical description of microphysical systems is
generally based on Schrödinger’s wave mechanics [1,2],
Heisenberg’s matrix mechanics [3], or on Feynman’s path-
integral mechanics [4]. Another approach is the
hydrodynamic formulation of quantum mechanics
belonging to Madelung, De Broglie, Takabayasi and Bohm
(idea of “subquantum medium”) [5]. The hydrodynamic
theory of quantum mechanics has been later extended by
De Broglie (idea of the “double solution”) and used as
preliminary theoretical scheme for quasi-causal
interpretations of microphysical phenomena [5,6].

The scale relativity theory (SRT) is a new approach to
understand quantum mechanics, and moreover physical
domains involving scale laws, such as chaotic systems
[7,8]. It is based on a generalization of Einstein’s principle
of relativity to scale transformations. Namely, one redefines
space-time resolutions as characterizing the state of scale
of reference systems, in the same way as velocity
characterizes their state of motion. Then one requires that
the laws of physics apply whatever the state of the
reference system, of motion (principle of motion-relativity)
and of scale (principle of scale-relativity). The principle of
scale-relativity is mathematically achieved by the principle
of scale-covariance, requiring that the equations of physics
keep their simplest form under transformations of
resolution [7,8].

It is well known that the geometrical tool that
implements Einstein’s general motion-relativity is the
concept of Riemannian, curved space-time. In a similar
way, the concept of fractal space-time [7,8], also
independently introduced by El Naschie [8-15] is the
geometric tool adapted to construct a new theory. We use
here the word ‘fractal’ in its general meaning [16], denoting
a set that shows structures at all scales and is thus explicitly
resolution-dependent. More precisely, one can
demonstrate [16] that the Dτ – measure of a continuous,
almost everywhere non-differentiable set of topological
dimension Dτ  is a function of resolution, L=L(ε), and
diverges when resolution tends to zero, L(ε)→∞ when
ε→0. In such a framework, resolutions are considered to

be inherent to the description of the new, fractal, space-
time. A new physical content may also be given to the
concept of particles in this theory; various properties of
‘particles’ can be reduced to the geometric structures of
the (fractal) geodesics of such a space-time [7].

Three levels of such a theory  have  been considered:
(i) a ‘Galileian’ version corresponding to the standard
fractals with constant fractal dimensions, and where
dilation laws are the usual ones [7,8]. This theory provides
us a new foundation of quantum mechanics from first
principles; (ii) a special scale-relativistic version that
implements in a more general way the principle of scale-
relativity. It yields new dilatation laws of a Lorentzian form,
that imply to re-interpret the Planck length-scale as a lower,
impassable scale, invariant under dilatations [7,8]. The
predictions of such a theory depart from that of standard
quantum mechanics at large energies [7-15,17,18]; (iii) the
third level, ‘general scale-relativistic’ version of the theory
deals with non-linear scale laws and accounts for the
coupling between scale laws and motion laws [7]. It yields
a new interpretation of gauge invariance and allows one
to get new mass-charge relations that solve the scale-
hierarchy problem [7]. Using this theory [7], both
conceptual (the complex nature of wave function, the
probabilistic nature of quantum theory, the principle of
correspondence, the quantum-classical transition, the
divergence of masses and charges, the nature of Planck
scale, the nature and quantization of electric charge, the
origin of mass discretization of elementary particles, the
nature of cosmological constant, etc.) and quantized results
(the mass-charge relations, the electro-weak scale, the
electron scale, the elementary fermion mass spectrum
etc.) are obtained.

In the present paper the fractal model of atom is
obtained in a generalized hydrodynamic formulation of
SRT. Thus, in paragraph 2 we build a mathematical model
that finally gives a generalized Navier-Stokes type equation
and from here, for a special case of the movement, a
generalized Schrödinger type equation, respectively the
generalized hydrodynamic model. In Paragraph 3 this
model is further applied to study the atom.
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Theoretical part
 Mathematical model

Let us suppose that the electron motion around the
nucleus takes place on fractal curves (continuous but non-
differentiable curves) of fractal dimension DF [19]. A
manifold compatible with such movements defines a
fractal space-time. The fractal nature of space-time implies,
through non-differentiability, the breaking of differential
time reflection invariance. In such a context, the usual
definitions of the derivative of a given function with respect
to time [7]:

    (1)

are equivalent in the differentiable case. One passes from
one to the other by the transformation ∆t → - ∆T (time
reflection invariance at the infinitesimal level). In the non-
differentiable case two functions (df+ / dt) and (df- / dt)
are defined as explicit functions of t and dt:

       (2a,b)

The sign (+) corresponds to the forward process  and
(-) to the backward process.

Then, in the spaces coordinates dX, we can write  [7]:

(3a,b)

with ν
±
 the forward and backward mean speeds,

    (4a,b)

and dζ
±
  a measure of non-differentiability (a fluctuation

induced by the fractal properties of trajectory) having the
average:

       (5)

While the speed - concept is classically a single concept,
if space-time is a fractal, we must introduce two speeds
(ν+ and ν

-
 ) instead of one. This “two-valueness” of the

speed vector is a new, specific consequence of non-
differentiability that has no standard counterpart (in the
sense of differential physics).

However, we cannot favor ν+ rather than ν-. The only
solution is to consider both the forward (dt >0) and
backward (dt <0) processes together. Than, it is necessary
to introduce complex speed  [7]:

           (6)

If (ν+ +ν
-
)/2 may be considered as differentiable

(classical) speed, then the difference (ν+ - ν
-
)/2 is the non-

differentiable (fractal) speed.
Using the notations dx

±
=d

±
x equation (6) becomes:

      (7)

This enables us to define the operator:

                                                         (8)

Let us now assume that the fractal curve is immersed
in  a  3-dimensional  space,  and  that X  of components
Xi(i  = 3,1 ) is the position vector of a point on the curve.
Let us also consider a function f(X,t) and the following
Taylor series expansion up to the second order:

             

      (9)

From here, the forward and backward average values
of this relation using notations dX

±
i = dX

±
i  take the form:

     (10)

We make the following stipulations: the mean values of
the function f and its derivates coincide with themselves,
and the differentials  dX

±
i  and dt are independent, therefore

the averages of their products coincide with the product
of average. Thus equation (10) becomes:

  

                       (11)

or more, using (3a,b),

                          (12)

Since dζ
±

i describes the fractal properties of the
trajectory with the fractal dimension DF [7,16], it is natural
to impose (dζ

±
i )DF to be proportional with dt, i.e.

     (13)

where D is a coefficient of proportionality.
Let us focus now on the mean 〈dζ

±
idζ

±
l〉 . If i ≠ l this

average is zero due the independence of dζ i  and dζ l. So,
using (13) we can write:

    (14)

with

and we had considered that:

Then (12) may be written under the form:
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(15)

If we divide it by dt and neglect the terms which contain
differential factors, (15) is reduced to:

 (16)

Under the circumstances, let us calculate, δf / dt
According with (8) and taking into account (16), we have:

                  

 

  

               

or using (6):

(18)

This relation also allows us to give the definition of the
fractal operator:

   (19)

We now apply the principle of scale covariance, and
postulate that the passage from classical (differentiable)
mechanics to the “fractal” (non-differentiable) mechanics
that is considered here can be implemented by replacing
the standard time derivative d/dt by the new complex
operator δ/dt (this results in a generalization of the principle
of scale covariance given by Nottale in [7]). As a
consequence, we are now able to write the equation of
geodesics (a generalization of the first Newton’s principle)
in a fractal space-time under its covariant form:

    (20)

i.e. a generalized Navier-Stokes type equation with an
imaginary viscosity coefficient η =iD(dt)(2/DF)-1 This means
that the complex global acceleration field, δV / dt depends
on the complex local acceleration field, δtV, on the non-
linear (convective) term, V . ∇ V and on the dissipative one,
∆V. Moreover, the behavior of a “fractal fluid” is of
viscoelastic or of hysteretic type [20-22].

 From equation (20), using the operational relation,V .
∇ V =∇ (V2 / 2) - V . (∇  . V), we obtain,

    (21)

If the movement of the “fractal fluid” is irrotational, i.e.
Ω= ∇  . V = 0, we can choose V of the form:

    (22)

with φ a complex speed potential. Then (21) becomes:

      (23)

and more, by substituting equation (22) in equation (23)
we shall have by integration:

(24)

with F(t) a function of time. We observe that equation  (23)
has been reduced to a single scalar relation (24), i.e. a
generalized Bernoulli-type equation.

Let us choose the complex speed potential in the form:

                   (25a)

By means of equation (24) the function ψ satisfies a
generalized Schrödinger type equation,

      (25b)

Moreover, for D=h/2mo with h the reduced Planck
constant and m0 the rest mass of a test particle and the
fractal dimension DF = 2(e.g. Peano type curves which
completely cover a two-dimensional surface – see Nottale’s
approach of the SRT [7]), equation (25b) for F(t) = 0 is
reduced to the usual Schrödinger equation. Then ψ
simultaneously behaves as speed potential and wave
function.

For   the amplitude and S the phase
of ψ, the complex speed V in the form V= ν + iu has the
components:

           (26a,b)

By substituting the complex speed field V of components
(26a,b) in equation  (23) and separating the real and
imaginary parts, we obtain:

             (27a, b)

with Q the fractal potential,

(28)

Equation (27b), by integration up to an arbitrary phase
factor which may be set to zero by a suitable choice of the
phase ψ, corresponds to the conservation law of the
probability density:

        (29)

In a scalar field U, equation (27a) takes the form

(30)

and corresponds to the momentum conservation law.
Equations (29) and (30) form the equations system of
hydrodynamics in the fractal space-time.

The wave function of ψ(r,t) is invariant when its phase
changes by an integer multiple of 2π. Indeed, equation
(26a) gives:

(17)
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(31)

a condition of compatibility between the SRT
hydrodynamic model and the wave mechanics.

Particularly, for D=h/2m  and DF = 2 (30) takes the
standard form

The set of equations (29) and (30) represents a complete
system of differential  equations  for the fields ρ(r,t) and
ν(r,t); relation (31) relates each solution (ρ,ν)n with the
wave solution ψ in a unique way.

The field ρ(r,t)  is a probability distribution, namely the
probability of finding the particle in the vicinity  dr of the
point r at time t,

               (32a,b)

the space integral being extended over the entire area of
the system. Any time variation of the probability density
ρ(r,t) is accompanied by a probability current ρν  pointing
towards or outwards, the corresponding field point r (29).

The position probability of the real velocity field ν(r,t)
(30), varies with space and time similar to a hydrodynamic
fluid placed in the force-field of an external potential  and
U(r,t)a fractal potential (28). The fluid (in the sense of a
statistical particles ensemble) exhibits, however, an
essential difference compared to an ordinary fluid: in a
rotation motion ν(r,t) increases (decreases) with the
distance from the center r decreasing (increasing)  (31).

The expectation values for the real velocity field and the
velocity operator  of wave mechanics
are equal,

      (33)

but in the higher-order, |n| > 2, similar identities are
invalid, namely  〈ν in〉  ≠ 〈ν n〉 . The expectation for the ‘fractal
force’ vanishes at all times (theorem of Ehrenfest [6]), i.e.

    (34)
or explicitly

    (35)

Two types of fractal stationary states are distinguished:
i) Dynamic states. For ∂/∂t = 0 and , ν≠0 equations (30)

and (29) give:

          (36a,b)

namely

            (37a,b)

Consequently, inertia moν . ∇ν , exterior forces (-∇ U),
and fractal forces (-∇ Q) are in balance at every field point
(36a). The sum of the kinetic energy moν

2/2, external (U)
and fractal potential energy (Q) is invariant, i.e. equal to
the integration constant E≠ E(r) (37a). E ≡ <E>represents
the total energy of the dynamic system. The probability flow
density ρν has no sources (36b), i.e. its streamlines are closed
(37b) .

ii) Static states. For ∂/∂t= 0 and ν=0, equations (30)
and (29) give:

     (38)
i.e.

                   (39)

The exterior force (-∇ U) is balanced by the fractal force
(-∇ Q) at any field point (38). The sum of the exterior (U)
and interior (Q) potential energy is invariant, i.e. equal to
the integration constant, E ≠ E(r)  eq. (29) is identically
satisfied.  E ≡ <E> represents the total energy of the fractal
static system.

Results and discussions
Hydrodynamic model of the fractal atom

Let us consider an electron orbiting in the electric field
of the nucleus,  U=-e2 / (4πεor). The collective chaotic effect
on considered electron of all the other electrons has as
result a motion on a fractal curve. For example, if  D=h /
2mo, and DF = 2, a Brownian-like motion  can be chosen
[23]. A particularization of  equation (37a) for the case of
stationary motion gives:

(40a-g)

The probability currents can flow only in closed lines.
Because of the azimuthal symmetry of the system, the
speed potential is of the form S=2mmoD(dt)(2/DF)-1 eq. (26a)
with (32a,b), corresponding to a speed field independent
of Φ

         (41a,b)

This statement is in agreement with the compatibility
condition,  (31),

    (42)

By the substitution of relation (41a), equation (40a)
reduces to the equation:

    (43)

which is independent of Φ. In other words, ρ = ρ(r, ϕ)
since  ν||eΦ and (40b) is satisfied. By means of the
statement,

   (44)

Equation (43) can be separated into two differential
equations with respect to r and ϕ, respectively,

(λ - separation parameter)

(45a, b)

Equations (45a,b) have solution if the constants E and λ
assume the eigenvalues [6]:

    (46)
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and

    (47)

The solutions of equation (45b) are
  where ζ=2r/nao and

    (48)

and the solutions of equation (45b) are
Thus one finds after normalization that

[6]

   (49a,b)

For physical reasons, only the following combinations
of quantum numbers are acceptable:

(50)

Relations (41a,b) and (49a,b) represent the complete
solution (ρ,ν)min of the SRT hydrodynamic model of the
fractal atom. In figure 1, the probability density dependence
on the polar normalized coordinates, for various quantum
numbers, is graphically represented. The ρlmn probability
density behavior for n=1,2  and different values of the (l,m)
pairs, [a(l=0;m=0;n=1), b(l=0;m=0;n=2), c(l=1;
m=0;n=2),  d(l=1;m=1;n=2), e(l=1;m=-1;n=2]), is
shown below.

f) The coordinate axes

Fig. 1. The probability density dependence on the polar normalized coordinates, for various quantum numbers, in 3D representation
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By means of the recurrence relations for the associated
Laguerre and Legendre polynomials [4], one shows from
the solution (49a,b) that equation (37a) becomes

          (51)

while

     (52)

and

       (53)

It can be seen that the fractal potential energy (Q)
overcompensates the electric energy (U) and the kinetic
energy  moν

2/2 at any field point (r, ϕ, Φ). The remaining
energy is finite and represents the observable energy of
the system:

             (54)

The states with m = 0 are static states (ν=0) and the
states with m≠0 are dynamic states (ν≠0) eq. (41a,b), (51)
and (53)). In any state with m≠0, the rotation motion
decreases with increasing distance r, i.e. for a given
direction ϕ, νΦ ~1/r  (41a,b).

Conclusions
The main conclusions of the present paper are as

follows:
i) a generalization of the Nottale’s scale relativity theory

is given. The generalized Schrödinger equation is obtained
as an irrotational movement of generalized Navier-Stokes
type fluids having an imaginary viscosity coefficient. Then,
ψ simultaneously becomes wave-function and speed
potential;

ii) a hydrodynamic model of the scale relativity theory
is built;

iii) one can stress out that the quantum potential
introduced in the hydrodynamic model of quantum
mechanics comes from the non-differentiability of the
fractal space-time;

iv) applying this model to study the atom, it resulted that
the real part of the complex velocity field describes the
electron averaged movement. In this case the electron
moves on stationary orbits according to a quantification

condition. The imaginary part of the complex velocity
describes the fractality through a fractal potential. Now,
using this potential, from the averaged movements (on
stationary orbits), the electron energy quantification results;

v) in the DF=2 fractal dimension and for the D = h / 2m
viscosity coefficient, the classical results of quantum
mechanics for the hydrogen atom are obtained.
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